Significance of physical properties in azimuth dimension in Hall thruster ExB plasma: Toward active control of plasma by artificial azimuthal modulation

Junhwi Bak*, Rei Kawashima, and Kimiya Komurasaki

The University of Tokyo

ExB Plasmas Workshop 2022

Madrid, online event

Pitfall of azimuthal mean values of individual physical properties

- Axisymmetric geometry/operation appearance makes us to assume uniform plasma in azimuth
- Are azimuthal distributions of properties really uniform? No.. Instabilities, rotating spokes, non-ideal manufactures!
- What is the influence of azimuthal distributions?

Electron axial velocity with azimuthal component becomes...

$$v_{z} = -\frac{m_{e}v_{en}}{eB^{2}} \left\{ E_{z} + \frac{1}{n_{e}} \nabla_{z} p_{e} \right\} - \frac{1}{B} \left\{ E_{\theta} + \frac{1}{n_{e}} \nabla_{\theta} p_{e} \right\}$$

$$\Gamma_{e,z} = n_{e}v_{z} = -\frac{m_{e}v_{en}}{eB^{2}} \{ n_{e}E_{z} + \nabla_{z} p_{e} \} - \frac{1}{B} \{ n_{e}E_{\theta} + \nabla_{\theta} p_{e} \}$$
Classical diffusion $\propto 1/B^{2}$
Azimuthal distribution $\propto 1/B$

$$I/B \text{ proportional transport contributions}$$
have been ignored!
Q. How significant are these contributions?

Electron cross-field transport in $\mathbf{E} \times \mathbf{B}$ plasma

Electron cross-field (axial-azimuthal) current density

• Azimuthal:
$$j_{e\theta} = \frac{m_e v_{en}}{eB_r^2} en_e E_{\theta}^* + \frac{1}{B_r} en_e E_z^*$$

 $(E^* \equiv E + \nabla p_e/n_e)$

• Mobility equivalent, which is '1/B' itself, of transport by azimuthal gradient is 2-3 orders higher than the classical one

• This is simply because it is high Hall parameter plasma!

- Sensitivity of axial transport to azimuthal gradient is much larger
- This is just as the θ direction electron flow is dominated by axial gradient

$$v_{\mathrm{e}\theta} \approx \frac{E_z^*}{B_r}$$

(analogous between cross-field dimensions)

Various causes of azimuthal inhomogeneity (E_{θ}) and our approach

[1] J. Bak, R. Kawashima, K. Komurasaki, and H. Koizumi, Phys. Plasmas 26, 073505 (2019); doi.org/10.1063/1.5090931
 [2] J. Bak, R. Kawashima, J. Simmonds, and K. Komurasaki, Phys. Plasmas 28, 102510 (2021); doi.org/10.1063/5.0060377
 [3] J. Bak, R. Kawashima, G. Romanelli, and K. Komurasaki, J. Appl. Phys. 131, 053302 (2022); doi.org/10.1063/5.0067310

Influences of azimuthal inhomogeneity on equilibrium plasma structure

• Plasma structure can be locally controlled. Potential and density correlation differs depending on neutrals/B-field modulation

[1] J. Bak, R. Kawashima, K. Komurasaki, and H. Koizumi, Phys. Plasmas 26, 073505 (2019); <u>doi.org/10.1063/1.5090931</u>
 [2] J. Bak, R. Kawashima, G. Romanelli, and K. Komurasaki, J. Appl. Phys. 131, 053302 (2022); <u>doi.org/10.1063/5.0067310</u>

Influences of \dot{m} inhomogeneity strength on Hall thruster operation^[1]

□ Induced plasma inhomogeneity

Relation to global parameters

 I_{ec} : Electron current I_{ig} : Guard-ring current (loss to the walls) I_{ib} : Ion beam current Ξ: neutrals inhomogeneity strengths; closer to 1 = more inhomo. \bar{S}_r : Radial mean of image intensity $\sigma_{\bar{S}_r}$: Standard deviation of \bar{S}_r in azimuth

 Neutrals inhomogeneity suppresses discharge oscillation and affects discharge current components. Such current behaviors are correlated to plasma azimuthal inhomogeneity

Spatial correlation of plasma properties and regional characteristics

Azimuth dimension is periodic, so the net transport has to be considered. (not *means of individual properties*)

Ex) For $\Gamma_{ez,E_{\theta}}^{-} = \frac{1}{B_{r}} n_{e} E_{\theta}$, in the case of uniform magnetic field, the azimuthal correlation n_{e} and E_{θ} becomes important

Net axial transport by E_{θ} at a specific *z* location: $\Gamma_{ez,E_{\theta}}^{-} = \frac{1}{B_{r}} \langle n_{e}E_{\theta} \rangle$ With $n_{e} = n_{e0} + n_{e1} \sin(k\theta)$ $V_{p} = V_{p0} + V_{p1} \sin(k(\theta + \delta\theta))$ * $\langle X \rangle = \frac{1}{2\pi} \int_{0}^{2\pi} X d\theta$

□ Set of affecting parameters^[1]

$$\Gamma_{\mathrm{e}z,E_{\theta}}^{-} = 0.5\sin(k\delta\theta) \cdot n_{\mathrm{e}1} \cdot E_{\theta 1} \cdot \frac{1}{B_{\mathrm{e}}}$$

: Effective weight coefficient from the phase difference
: Electron density inhomogeneity
: Potential inhomogeneity

: Magnetic flux density

* Note that this can be applied to different wavenumber/frequency components

Conclusion and open questions

Physical properties in azimuth dimension significantly affect electron cross-field transport in Hall thrusters

- Transport by azimuthal gradient of potential/pressure can easily become dominant transport mechanism
- Artificial azimuthal modulation of operation parameters induces characteristic equilibrium plasma structures
 - Can a localized plasma control be useful for some applications? How good controllability can we achieve?
 - How would such artificial modulation influence time-varying phenomena (instabilities, spokes, etc.)?
 - Does the equilibrium structure from artificial modulation have similarity to the instant structure?
- □ Strength of azimuthal inhomogeneity affects thruster performance
 - Enhanced electron transport is bad for efficiency-critical-applications, but can it be useful for other applications? (ex, enhance electron flow near anode inside thrusters)
 - What would be an acceptable inhomogeneity level for efficiency-critical-applications?
- **Given Spatial correlation of azimuthal plasma properties is critical on net cross-field transport**
 - How the affecting parameters in different wavenumber/frequency components (by different causes of inhomogeneity) are related to each other and evolve spatially?