A fluid formalism for low-temperature plasma flows dedicated to space propulsion in an unstructured high performance computing solver

<u>Guillaume Bogopolsky</u>, Valentin Joncquières, CERFACS/Safran Aircraft Engines Bénédicte Cuenot, Olivier Vermorel, CERFACS

ExB Plasmas Workshop 2022

Madrid, online event

Motivation

Development cycle of Hall thruster is very long

and expensive for companies

Simulation might alleviate this problem but are expensive too

- Different simulation methods
 - PIC [1,2,3,4,5]
 - DK [6,7]

Limited to small and simplified geometries [8,9]

[1]: Guarrigues et al. (2000) Plasma Sources Science and Technology, 23(5):053502
[2]: Adam et al. (2004). Physics of Plasma. 11(1):295–305
[3]: Taccogna et al. (2008). Plasma Sources Science and Technology, 17(2):024003
[4]: Coche et al. (2014). Physics of Plasma. 21(2):023503
[5]: Croes, V. (2017). PhD thesis, Ecole Polytchnique.
[6]: Hara, K. et al. (2012). Physics of Plasma, 19(11):113508
[7]: Raisanen, A. et al. (2018). AIAA Joint Propulsion Conference, 4809
[8]: Minelli et al. (2018). IEEE Transaction on plasma science, vol.46 of 2, pp. 219-224
[9]: Taccogna et al. (2018). Physics of Plasmas. 25(061208)

Fluid models have a priori the potential to scale to provide global

characteristics of the plasma in a reasonable computational time

AVIP – A 3D plasma solver for HETs

- Unstructured
- Massively parallel
- PIC, fluid and hybrid approaches

A 10-moment fluid model

$$\begin{array}{l} \left\{\begin{array}{c} \partial_{t}\rho_{e}+\nabla.(\rho_{e}\vec{u}_{e})=S^{0}_{e,ioniz}\\ \partial_{t}(\rho_{e}\vec{u}_{e})+\nabla.(\rho_{e}\vec{u}_{e}\vec{u}_{e}+k_{B}T_{e}n_{e}\overline{\bar{I}})=&-en_{e}(\vec{E}+\vec{u}_{e}\times\vec{B})+S^{1}_{e,ioniz}+S^{1}_{e,e}\\ \partial_{t}(\epsilon_{e})+\nabla.\left(\left(\frac{1}{2}\rho_{e}\vec{u}_{e}^{2}+\frac{\gamma}{\gamma-1}k_{B}T_{e}n_{e}\right).\vec{u}_{e}\right)=&-en_{e}\vec{E}.\vec{u}_{e}+S^{2}_{e,ioniz}+S^{2}_{e,en}+S^{2}_{e,ex}\\ \partial_{t}\rho_{i}+\nabla.(\rho_{i}\vec{u}_{i})=S^{0}_{i,ioniz}\\ \partial_{t}(\rho_{i}\vec{u}_{i})+\nabla.(\rho_{i}\vec{u}_{i}\vec{u}_{i}+k_{B}T_{i}n_{i}\overline{\bar{I}})=&en_{i}(\vec{E}+\vec{u}_{i}\times\vec{B})+S^{1}_{i,ioniz}+S^{1}_{i,in}\\ \partial_{t}(\epsilon_{i})+\nabla.\left(\left(\frac{1}{2}\rho_{i}\vec{u}_{i}^{2}+\frac{\gamma}{\gamma-1}k_{B}T_{i}n_{i}\right).\vec{u}_{i}\right)=&en_{i}\vec{E}.\vec{u}_{i}+S^{2}_{i,ioniz}+S^{2}_{i,in}\end{array}$$

Neutrals

$$\partial_t \rho_n + \vec{u}_{0,n} \nabla .(\rho_n) = S^0_{n,ioniz}$$

 $\vec{B}(\vec{x},t) = \vec{B}(\vec{x})$

• Azimuthal velocity is taken into account

$$u_{ heta,e} = rac{-e}{m_e
u_{en}} B_r u_{z,e}$$

• Bohm law for anomalous transport

$$\nu_{anom} = \frac{\alpha_B \omega_B}{16}$$

- Constant magnetic field
- Poisson equation

Collision source terms

• Collision rates are integrated considering a Maxwellian distribution depending on the temperature and the Mach number of the species:

$$\begin{split} S_{e,ioniz}^{0} &= \frac{m_i}{m_e} S_{i,ioniz}^{0} = -\frac{m_i}{m_e} S_{n,ioniz}^{0} \\ &= n_e f_{0,ioniz} \\ &= n_e n_n 2 \left(\frac{2k_B T_e}{\pi m_e}\right)^{\frac{1}{2}} \frac{e^{-M_e^2}}{M_e} \int \sigma_{ioniz}(x) x^2 e^{-x^2} \sinh(2M_e x) dx \end{split}$$

For HET chambers, the electron velocity should be included in the computation of the ionization frequency

M. S. Benilov. A kinetic derivation of multifluid equations for multispecies nonequilibrium mixtures of reacting gases. Physics of Plasmas, 4(3):521–527, 1997.
H. Le and J-L. Cambier. Modeling of inelastic collisions in a multifluid plasma: Excitation and deexcitation. Physics of Plasmas, 22(093512), 2015.
LXCAT Database

A 2D radial-axial test case

Parameters are representative of a SPT-100 thruster

<i>m</i> _n	4.85 mg/s	$u_{0,n}$	300 <i>m/s</i>
B_{max}	237 G	ϕ_a	300 V
L _{AC}	33 mm	Lchannel	25 mm
h _{channel}	15 mm	$n_{0,e}$	$10^{17} m^{-3}$
$T_{0,e}$	5 eV	$T_{0,i}$	0.1 eV

Fully unstructured mesh

A 2D radial-axial test case

- Global parameters of the plasma inside the discharge chamber are well reproduced
- Correct prediction of the behavior of electric sheaths in the vicinity of walls, without any modeling
- Reliable prediction of the ionization zone and the acceleration of ions through the exit plane

A 2D radial-axial test case

- Comparison with hybrid and PIC results from Adam et. al. 2008: Physics, simulation and diagnostics of Hall effect thrusters
- Good agreement also on potential, electric field and ionization source term

Performances	Experimental	AVIP-Fluid
Isp	$1734 \ s$	$1937 \ s$
Discharge current I_d	5 A	3.6 A
Divergence efficiency η_d	0.93	0.76
Voltage efficiency η_v	0.89	0.94
Current efficiency η_b	0.775	0.78
Mass efficiency η_m	0.86	0.42
Total efficiency η_t	0.59	0.24

R. Hofer and A. Gallimore. Efficiency analysis of a high-specific impulse hall thruster. In AIAA Joint Propulsion Conference, Fort Lauderdale USA, 3602, 2004.

- Global parameters match experimental measurements of NASA-173Mv2 Hall thruster
- Lower mass efficiency due to ion losses at the metallic walls

Conclusion

- AVIP is an unstructured massively parallel solver dedicated to Hall Thrusters
- It uses a 10 moments fluid formalism, validated on a 1D benchmark
- Improved accuracy compared to the drift-diffusion methodss
- But typical weaknesses of fluid methods appear for low densities and high Knudsen, which is problematic for temperature prediction
- We managed to reproduce the basic global characteristics of the plasma in the discharge chamber
- Ionization zone and acceleration of ions through the exit plane are correctly predicted
- However the electron mean energy does not reach the expected values
- Improvement needed on the heat flux model and suitable dielectric boundary conditions at the walls are needed

Acknowledgments

- This work used the HPC resources of GENCI (Grant A0032B10157)
- We acknowledge financial support from a Safran Aircraft Engines within the project POSEIDON (ANR-16-CHIN-003-01) (LPP/CERFACS/SAFRAN)