Oblique magnetic field effect on radial plasma dynamics

Alberto Marín-Cebrián, Adrián Domínguez-Vázquez, Pablo Fajardo and Eduardo Ahedo

ExB Plasmas Workshop 2022

Madrid, online event

Introduction and background

- **Plasma wall interaction:** energy loss, plasma recombination, wall material erosion.
- In a HET chamber: Low collisionality + strong interaction with the walls.
 - Non-Maxwellian species VDFs.
 - Kinetic models should be used.
- Previous kinetic (PIC) studies in HET plasma discharges.
 - Magnetic field perpendicular to the walls $(B = B_r)$.
 - Most works regarding plasma-wall interaction. Refs. [1-3].
 - Significant depletion of the radial electron VDF.
 - Temperature anisotrpy.
 - Oblique magnetic field.
 - Miedzik et al. Ref. [4].
 - Enhanced isotropization of electron temperature, even for a small departure from the normal incidence.
 - Questions the simplification $(B = B_r)$ of many kinetic models.
- Other related studies.
 - Supersonic ions at the sheath edge
 - Magnetic presheath

The 1Dr PIC model

• Simulation sketch

The model details can be found in Ref. [3]

- Particle populations
 - Magnetized electrons
 - Unmagnetized ions
- Neutral background
 - Uniform density and temperature
- Dielectric walls
 - Sink of electrons and ions (plasma recombination)
 - Source of secondary electrons
- Collisions
 - Coulomb: e e, e i, i i.
 - *e n*: elastic, excitation, ionization.
 - Allows to transfer $s \rightarrow p$.

- Electron VDF at the mid-channel radius (M)
- Radial magnetic field
 - Highly anisotropic
 - Highly depleted VDF tails

- Oblique magnetic field
 - Significantly more isotropic
 - Largely replenished VDF tails

Dashed-dot lines: Approximate wall collection energy

- Macroscopic magnitudes
 - Largely affected by the wall incidence angle
 - Different trends can be observed for positive and negative angles
- Electron-wall interaction parameters

Oblique magnetic field effect on radial plasma dynamics

- Radial momentum balance
- Radial Magnetic field
 - Electric and pressure forces balance each other.
 - Small inertia contribution.
 - Null magnetic force

- Negative incidence angle
 - Pressure force balances the magnetic force.
 - Small contributions from the electric force and inertia

- Positive incidence angle
 - Electric force balances the magnetic force.
 - Small contributions from the pressure force and inertia

The magnetic force confines the electron population if $\alpha_{B1} < 0$ and pushes then towards the walls if $\alpha_{B1} > 0$.

Simplified fluid model

Equations

$$\frac{\mathrm{d}}{\mathrm{d}r}(n_e u_{ri}) = n_e \bar{\nu}_{prod}, \qquad \bullet \quad \mathsf{C}$$

$$m_i \frac{\mathrm{d}}{\mathrm{d}r}(n_e u_{ri}^2) = -en_e \frac{\mathrm{d}\phi}{\mathrm{d}r}, \qquad \bullet \quad \mathsf{N}$$

$$0 = -T_e \frac{\mathrm{d}n_e}{\mathrm{d}r} + en_e \frac{\mathrm{d}\phi}{\mathrm{d}r} - en_e E_z \tan(\alpha_B), \quad \bullet \quad \mathsf{N}$$

Solution in non-dimensional form $(1 - \hat{u}_{ri}^2) \frac{\mathrm{d}\hat{u}_{ri}}{\mathrm{d}\zeta} = \hat{\nu}_{prod}(1 + \hat{u}_{ri}^2) - 2F\hat{u}_{ri}\zeta,$ Non-dimensional variables

0

d

$$\hat{u}_{ri} = \frac{u_{ri}}{c_s},$$

$$\zeta = \frac{r - r_M}{d},$$

$$\hat{\nu}_{prod} = \bar{\nu}_{prod} \frac{d}{c_s},$$

$$F = \frac{eE_z}{T_s} \frac{d}{2} \tan \alpha_{B1},$$

Free parameter

Known

- ontinuity
- lomentum (i)
- lomentum (e)

B.C. (1st order ODE)

 $(\zeta = 0) \ \hat{u}_{ri} = 0$

- Main model assumptions
 - Planar $(1/r \sim 0)$
 - Quasineutral $(n_e = n_i)$
 - Zero Debye length limit
 - Massless electrons
 - Negligible ion pressure
 - Collisionless (for momentum eq.)
 - Uniform and isotropic electron temperature
 - Constant production frequency

Two different regimes exist depending on the value of *F*

- Sonic flow at the sheath edge (F < 1)
- Supersonic ion flow (F > 1)

Simplified fluid model

• Parametric relation

Good agreement between PIC and fluid. Quasineutral magnetic presheath?

Conclusion and future work

- As in Ref. [4], simulations with an oblique magnetic field lead to a significant isotropization of the electron population.
- The oblique magnetic field has a strong influence on macroscopic plasma magnitudes.
- Depending on incidence angle, the radial magnetic force can promote plasma losses to the walls or act as shielding.
- A simplified fluid model of the discharge has been proposed and validated against PIC solutions.
- For positive incidence angles, the sonic point moves inwards the channel and ions may become supersonic at the quasineutral region.
- 2D(r-z) PIC models currently in development will confirm or modify the conclusions extracted from this analysis.

Acknowledgments

Funded mainly by the PROMETEO-CM project. Grant number Y2018/NMT-4750(ComunidaddeMadrid/FEDER/FSE).

Additional support Project PID2019-108034RB (Spain'sNational Research and Development Plan).

The authors acknowledge the original version of the kinetic code by Dr. F. Taccogna and coworkers.

BACKUP SLIDES

Oblique magnetic field effect on radial plasma dynamics

References

- Sydorenko, D., Smolyakov, A., Kaganovich, I. and Raitses, Y., "Modification of electron velocity distribution in bounded plasmas by secondary electron emission", IEEE Transactions on Plasma Science, Vol. 34, No. 3, 2006, pp. 815–824.
- 2. Taccogna, F., Schneider, R., Longo, S. and Capitelli, M., "Kinetic simulations of a plasma thruster", Plasma Sources Science and Technology, Vol. 17, No. 2, 2008, pp. 024003.
- 3. Domínguez-Vázquez, A., Taccogna, F., Fajardo, P. and Ahedo, E., "Parametric study of the radial plasma-wall interaction in a Hall thruster", Journal of Physics D: Applied Physics, Vol. 52, No. 47, 2019, pp. 474003.
- 4. Miedzik, J., Barral, S. and Danilko, D., "Influence of oblique magnetic field on electron cross-field transport in a Hall effect thruster", Physics of Plasmas, Vol. 22, No. 4, 2015, pp. 043511.
- 5. Chodura, R., "Plasma-wall transition in an oblique magnetic field", Physics of Fluids, Vol. 25, 1982, pp. 1628–1633.
- 6. Riemann, K., "Theory of the plasma-sheath transition in an oblique magnetic field", Contributions to Plama Physics, Vol. 34, 1994, pp. 127–132.

The 1Dr PIC model

• HET sketch

- Fields acting on the plasma
 - Constant E_z
 - $E_r \rightarrow 1$ Dr Poisson equation.
 - Prescribed **B**-field
 - Wall incidence angle α_{B1}
 - Symmetric configurations $\alpha_{B1} = -\alpha_{B2}$
 - $\overline{B} = constant$

• B-field sketch

The model details can be found in Ref. [3]

- Magnetized electrons
 - *E* × *B* azimuthal drift
 - e = p + s
- Unmagnetized singly charged ions
 - Only affected by E_r
 - Generated with u_{zi}
- Neutral background
 - Uniform $n_n(t)$ and T_n

Initially Maxwellian $n_e = n_i$ $T_e = 10 \ eV$, $T_i = 1 \ eV$

ICD: ionization balances wall losses at stationary conditions

- Collisions
 - Coulomb: e e, e i, i i.
 - e n: elastic, excitation, ionization.

• Allows to transfer $s \rightarrow p$.

- Dielectric walls
 - Sink of electrons and ions (plasma recombination)
 - Source of secondary electrons

- Macroscopic magnitudes
 - Largely affected by the wall incidence angle
 - Different trends can be observed for positive and negative angles

Particle losses to the wall decrease

								· · · · · · · · · · · · · · · · · · ·
Magetic field angle $(deg.)$	α_{B1}	-15	-10	-5	0	5	10	15
Current densities	$j_{re,1}^{(tw)}$	41	50	60	81	123	163	196
to walls (A/m^2)	$j_{re,2}^{(tw)}$	54	68	92	131	157	185	220

Particle losses to the wall increase

DEI

Further results

• Ion sonic point location (PIC simulations)

Sonic point moves inwards the quasineutral region.
This behavior is also captured by the fluid model (Regime II).

Further discussion

• Sonic point and sheath edge locations diverge for positive values of α_{B1} in PIC simulations. Such shift of the sonic point inwards the quasineutral region is also predicted by the fluid model (Regime II).

- For higher temperatures (as it is the case when anomalous collisions are included in the simulation) the oblique magnetic field has a smaller effect on the plasma response ($F \propto \tan(\alpha_{B1})/T_e$).
- Secondary electrons have a marginal role in all the cases considered in this work. However, in discharges dominated by secondary electrons (beyond the charge saturation limit) this behavior may change.